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Trajectory Grouping with Curvature Regularization
for Tubular Structure Tracking
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Abstract—Tubular structure tracking is a crucial task in
the fields of computer vision and medical image analysis. The
minimal paths-based approaches have exhibited their strong
ability in tracing tubular structures, by which a tubular structure
can be naturally modeled as a minimal geodesic path computed
with a suitable geodesic metric. However, existing minimal paths-
based tracing approaches still suffer from difficulties such as the
shortcuts and short branches combination problems, especially
when dealing with the images involving complicated tubular tree
structures or background. In this paper, we introduce a new
minimal paths-based model for minimally interactive tubular
structure centerline extraction in conjunction with a perceptual
grouping scheme. Basically, we take into account the prescribed
tubular trajectories and curvature-penalized geodesic paths to
seek suitable shortest paths. The proposed approach can benefit
from the local smoothness prior on tubular structures and the
global optimality of the used graph-based path searching scheme.
Experimental results on both synthetic and real images prove that
the proposed model indeed obtains outperformance comparing
with the state-of-the-art minimal paths-based tubular structure
tracing algorithms.

Index Terms—Tubular structure tracking, minimal path, per-
ceptual grouping, curvature penalization, fast marching algo-
rithm, graph optimization.

I. INTRODUCTION

Tracing tubular structures such as blood vessels, roads and
rivers is a fundamental task arisen in the fields of computer
vision, medical imaging and remote sensing. A basic objective
for tubular structure tracking is to search for the centerline
and/or the tubular boundaries in both sides to delineate an
elongated structure. This is very often carried out by inves-
tigating the tubular anisotropy and appearance features to
identify the centerline positions. These tubular features in
general can be extracted through various multi-scale and multi-
orientation filters as reviewed in [1], [2]. The existing tubular
structure tracking approaches can be roughly divided into two
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categories: (i) automatic tracking models for which all the
branches are expected to be identified, and (ii) interactive
tracking models where the user-intervention is often taken
into consideration. In this paper, we focus on the minimally
interactive tubular structure tracking approaches.

A simple and effective idea for automatic tubular structure
tracking is implemented by a path growing method. The
centerline of each vessel branch is depicted by a locally
optimal path propagated from a set of seed points in conjunc-
tion with a local tubular features detection procedure [6]–[8].
Unfortunately, the path growing approaches may fail to detect
tubular structures in the presence of gaps, since the objective
path can only advance a small step. The implementation
of minimal paths is an alternative solution for tracking a
connected tubular structure tree. Significant examples include
the keypoints-based minimal path growing models [9], [10],
where new source points are iteratively added during the
geodesic distance computation. The geodesic voting meth-
ods [11], [12] for which the tubular tree can be identified
via voting scores, and the minimum spanning tree model [13]
where a tubular structure tree can be identified by finds saddle
points from the geodesic distance maps [14]. Other interesting
tubular structure centerline tracing approaches include the
curve evolution-based models [15], [16], the tracing algorithms
relying on prescribed trajectories [17]–[19] and the learning-
based tubularity tracking models [20], [21].

Even through they have been extensively studied, the semi-
or fully automatic tubularity tracking models still lack suffi-
cient accuracy and reliability, especially in the case of complex
scenario. As an alternative solution, the type of interactive
tubular centerline tracing approaches very often relies on
the user intervention such as seed points which define the
source and end points for tubular branch. The minimal path
models, first introduced by [22], are regarded as one of the
most successful tools in tracing tubular structures. However,
in its original formulation [22], there is no guarantee that
the minimal paths pass through the exact tubular centerlines.
In order to address this issue, a two-stage procedure [23] is
proposed to get the exact centerlines by taking into account
the tubularity segmentation to generate centralized potential.
A significant improvement on tracing the centerlines and
boundaries has been made by [3], [24], where an abstract
dimension representing the thickness of tubular structures is
added, thus a 2D (resp. 3D) vessel can be described by a
3D (resp. 4D) minimal path. However, the short branches
combination and shortcuts problems may often occur for these
minimal path models, due to the complicated situation. The
minimal path models [25], [26] with a dynamic metric update
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Fig. 1. Examples for shortcuts and short branches combination problems. a The regions indicated by red and blue color represent the retinal artery and vein
vessels. The objective is to extract the artery vessel between two given points indicated by dots. b to d Vessel extraction results via anisotropic minimal path
model [3], the Finsler variant of the Sub-Riemannian minimal path model [4], [5] and the proposed method, respectively. The shortcuts and short branches
combination problems are observed in figures b and c, while the geodesic path derived from the proposed model indeed seeks the correct vessel

scheme incorporate the update procedure of geodesic metrics
during the fronts propagation. The curvature regularization is
introduced to minimal path computation in both continuous
domain [4], [27] and discrete domain [28], leading to geodesic
paths with rigidity prior to reduce the risk of short branches
combination and shortcuts problems. Unfortunately, the exist-
ing minimal path models based on the Eikonal partial differen-
tial equation (PDE) framework mentioned above are difficult to
benefit from the prescribed trajectories and may cost expensive
computation burden in the sense of interactive tubular structure
tracking. Despite the efforts on the improvement of minimal
path techniques, the short branches combination problem still
occurs when dealing with complicated situation, as depicted
in Fig. 1. Figs. 1b and 1c present the results derived from the
anisotropic model [3] and the progressive model [26], where
one can observe short branches combination issues. While the
proposed model indeed obtains good results, see Fig. 1d. It is
worth to point out the graph-based shortest path methods [29],
[30] for tubular trajectory tracing also obtain promising results.

In this paper, we propose a new approach based on minimal
paths for minimally interactive tubular structure centerline
tracing. It is able to blend the benefits from both of the
curvature-penalized geodesic paths and the prescribed tubular
trajectories. These trajectories are taken as candidate segments
to make up of the tubular centerlines and can be derived
from any tubular structure segmentation algorithm. The target
shortest paths used to delineate tubular structures are obtained
by the Dijkstra’s algorithm [31] which is established over
a graph consisting of nodes and edges. We propose a new
and reasonable way to build the weight for each edge in
conjunction with curvature-penalized geodesic distance, which
forms the main contribution of this paper. In [30], the authors
present a shortest path-based tubular structure tracking model,
which also relies on the prescribed trajectories. However, the
proposed method differs from the one introduced in [30]
mainly in the way of establishing the connection between two
trajectories which likely belong to the same tubular structure.
Specifically, the model in [30] connects two neighbouring tra-
jectories using a straight segment and measures the connection
cost by the Euclidean length of the segment and the related
angles between them. However, such a connection scheme
may accumulate the approximation errors of bridging the gaps
between adjacent trajectories, especially when extracting long
structures. In order to address this problem, we consider to
complete the gap between two neighbouring trajectories using

a curvature-penalized geodesic path, which is more accurate
and natural than using straight segments [30].

The manuscript is organized as follows. In Section II,
we briefly introduce the background on the computation of
curvature-penalized geodesic distances and the corresponding
minimal paths. Section III presents a new tubular structure
tracking model, based on the curvature-penalized minimal
paths and perceptual grouping. The experimental results and
the conclusion presented in Sections IV and V, respectively.

II. BACKGROUND ON CURVATURE-PENALIZED MINIMAL
PATH MODELS

The original isotropic minimal path model [22] is designed
to search for the global minimum of a weighted curve length.
The curvature-penalized minimal path approaches, such as
the Finsler elastica (FE) model [27], [32] and the Finsler
variant of the sub-Riemannian (FSR) model [4], are regarded
as two elegant extensions to the original model [22]. In
both approaches, the use of the curvature regularization is
able to yield geodesic paths with strongly smooth and rigid
appearance.

A. Curvature-Penalized Minimal Paths

Let Ω ⊂ R2 be an open and bounded image domain and
let Lip([0, 1],Ω) denote the set of curves γ : [0, 1]→ Ω with
Lipschitz continuity. An energy functional, or the weighted
curve length, of a curve γ ∈ Lip([0, 1],Ω) encoding curvature
penalization can be formulated as

L0(γ) =

∫ 1

0

C0(γ(u), γ′(u))ψ(κ(u))‖γ′(u)‖du, (1)

where κ : [0, 1] → R stands for the curvature of γ, and γ′ =
dγ/du is the first-order derivative of γ. One can see that the
energy (1) involves two cost functions C0 and ψ. Specifically,
the function C0 : Ω×R2 → R+ can be derived from the image
data using a steerable filter. Basically, C0(x,v) is expected to
have low values if the point x is close to a tubular centerline
and the direction v is proportional to the orientation that a
tubular structure should have at x. Furthermore, for the FE
and FSR minimal path models, the cost function ψ can be
respectively formulated as ψ := ψFE and ψ := ψFSR such
that

ψFE(κ) = 1 + (βκ)2, and ψFSR(κ) =
√

1 + (βκ)2,
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where β ∈ R+ is a scalar parameter that controls the
importance of the curvature κ.

Let Ω̃ = Ω × S1 be an orientation-lifted space of higher
dimension, where S1 = [0, 2π) is an interval with periodic
boundary condition, and denote by nθ = (cos θ, sin θ)> a unit
vector of an angle θ ∈ S1. As discussed in [4], [27], a key
idea for minimizing the energy (1) is to lift a planar curve γ ∈
Lip([0, 1],Ω) to the space Ω̃ in conjunction with a parametric
function τ : [0, 1]→ S1 defined being such that

γ′ = nτ ‖γ′‖, (2)

yielding that

κ =
τ ′

‖γ′‖ . (3)

The orientation lifting of γ yields a new curve γ̃ = (γ, τ)
subject to Eq. (2) and its first-oder derivative obeys γ̃′(u) =
(γ′(u), τ ′(u)) for any u ∈ [0, 1]. Note that each point
(x, θ) ∈ Ω̃ lying in an orientation-lifted curve γ̃ = (γ, τ)
has three coordinates, where the first two coordinate x ∈ Ω
indicates the physical positions and the third coordinate θ ∈ S1
characterizes the tangent vector γ′(u). With these definitions
in hands, the minimization of the energy (1) can be efficiently
addressed by seeking the minimal curve length of orientation-
lifted curves measured through an orientation-lifted Finsler
metric Fε : Ω̃ × R3 → R+, which implicitly encodes the
curvature terms. Specifically, for any point x̃ = (x, θ) ∈ Ω̃
and any vector ũ = (u, ν) ∈ R3, a general form of Fε can be
expressed as

Fε(x̃, ũ) = C(x̃)Fε(x̃, ũ), (4)

where C : Ω̃ → R+ is an orientation-dependent cost function
derived from image data, subject to C(x, θ) = C0(x,nθ).
The computation for the cost function C is presented in
Section II-B. In addition, the metric Fε only involves the
curvature penalty, thus independent to image data.

Specifically, the metric Fε for the FE minimal path
model [27] reads

Fε(x̃, ũ) =
√
ε−2‖u‖2 + 2ε−1|βν|2 + (ε−1 − 1)〈u,nθ〉. (5)

While for the FSR minimal path model [4], one has

Fε(x̃, ũ)2 =|〈u,nθ〉|2 + |βν|2 + ε−2(‖u‖2 − |〈u,nθ〉|2)

+ (ε−2 − 1)(min{0, 〈u,nθ〉})2. (6)

For an orientation-lifted curve γ̃, the energy of Lε(γ̃)
measured by the metric Fε can be expressed as follows:

Lε(γ̃) =

∫ 1

0

Fε(γ̃(u), γ̃′(u))du. (7)

As discussed in [4], [27], the minimum of the energy L0(γ) in
Eq. (1) can be well approximated by the length of a geodesic
path associated to the metric Fε as ε → 0, providing that
C0(x,nθ) = C(x, θ). In this way, the minimization problem of
the energy L0(γ) is transferred to minimizing the new energy
Lε(γ̃), where the later problem can be efficiently addressed
by the eikonal PDE framework.

The geodesic distance map very often lends itself for the
minimization of the length Lε. For a fixed source point ã ∈ Ω̃,

the geodesic distance map defines a minimal curve length for
each point x̃ ∈ Ω̃

Uã(x̃) = inf{Lε(γ̃) | γ̃ ∈ Lip([0, 1], Ω̃), γ̃(0) = ã, γ̃(1) = x̃}.
(8)

It is well known that the geodesic distance map Uã satisfies the
Eikonal equation such that Uã(ã) = 0 and for any orientation-
lifted point x̃ ∈ Ω̃\{ã} we have

max
ṽ 6=0

〈∇Uã(x̃), ṽ〉
Fε(x̃, ṽ)

= 1. (9)

The eikonal equation (9) can be solved by using the state-of-
the-art Hamiltonian fast marching method [5], in terms of a
Hamiltonian reformulation of Eq. (9) . A geodesic path Cã,x̃
linking from ã to x̃ can be derived by re-parametering the
solution C (which is also a geodesic path) to a gradient descent
ordinary differential equation (ODE) on the geodesic distance
map Uã

C′(u) = −arg max
‖ṽ‖=1

{ 〈ṽ,∇Uã(C(u))〉
Fε(ṽ,∇Uã(C(u)))

}
. (10)

For two given points with tangents, the minimal paths
associated to the data-driven curvature-penalized metric Fε
attempt to keep smooth, since Fε implicitly encodes curvature
penalization as regularization. In next section, we present the
construction details for the curvature-penalized metric Fε.

B. Computing the data-driven cost function C

The function C can be estimated from the image data via a
steerable filter [27]. In the context of tubular structure tracking,
the optimally oriented flux (OOF) filter [33] is an effective tool
for extracting geometry features from images, which will be
adopted in this paper. For clarity, we assume that the tubular
structures are supported to have locally lower intensities than
background.

Let Gσ be a Gaussian kernel with standard deviation σ and
let {∂xixj

Gσ}i,j be the Hessian matrix of the kernel Gσ . The
response of the OOF filter on a gray level image I : Ω→ R at
a point x and a scale r ∈ [Rmin, Rmax] is a symmetric matrix
of size 2× 2

Ψ(x, r) =

(
I ∗
(
∂x1x1

Gσ, ∂x1x2
Gσ

∂x2x1
Gσ, ∂x2x2

Gσ

)
∗ χr

)
(x), (11)

where “∗” stands for the convolution operator. The function
χr : Ω→ {0, 1} is the indicator for a disk of radius r

χr(x) =

{
1, ‖x‖ ≤ r
0, otherwise.

(12)

The eigenvalues of Ψ(·), denoted by λ1(·) and λ2(·) with
assumption λ1(·) ≤ λ2(·), can be used to characterize the
appearance of tubular structure centerlines. As in [33], one
can compute a scalar-valued function ζ : Ω→ R+

0 , referred to
as vessel score map, such that ζ(x) is derived from λ1(x, ·)
at the optimal scale

ζ(x) = max

{
max

r∈[Rmin,Rmax]

{
−1

r
λ1(x, r)

}
, 0

}
. (13)
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Spiral Anisotropic Tubular Model Progressive Model FSR Model Proposed Model

Fig. 2. Extraction of paths on a synthetic spiral image interrupted by noise. Column 1: The spiral image with noise. Columns 2-4: The paths extracted from
the anisotropic tubular minimal path model [3], the progressive model [26], the FSR minimal path model [4] and the proposed model, respectively

By the eigenvalues λ1(·), one can also derive an optimal scale
map ρ : Ω→ [Rmin, Rmax] as follows:

ρ(x) = arg max
r∈[Rmin,Rmax]

{
−1

r
λ1(x, r)

}
. (14)

The score ζ(x) indicates the likelihood of a point x belonging
to a tubular structure. As in [3], [33], the direction of a tubular
structure at a point x can be characterized by v2(x) which is
the eigenvector of Ψ(x, ρ(x)) corresponding to the eigenvalue
λ2(x, ρ(x)). The tool of the orientation scores extends the
confidence map Ψ to a multi-orientation space. Denoting by
ψos : Ω × S1 → R+ the orientation scores associated to an
image, we have

ψos(x, θ) = max{〈n⊥θ , Ψ(x, r∗)n⊥θ 〉, 0}, (15)

where n⊥θ = (− sin θ, cos θ) is a unit vector that is perpendic-
ular to nθ.

Then the image data-driven function C used in Eq. (4) can
be computed as

C(x̃) = exp
(
− αψos(x̃)

)
, (16)

where α ∈ R+ is a weighting parameter on the image data.

C. Motivation

In many applications, tubular structures involved in the
images may consist of multiple tree structures. In image
analysis applications, a fundamental task is to trace a path to
delineate a curvilinear structure between two given points from
the entire tree structures or from a complicated background.
The classical tubular minimal path models [3], [22], [24] likely
tend to travel along the regions with strong appearance features
or directly pass through the background regions, yielding the
shortcuts or short branches combination problems. Alterna-
tively, exploiting minimal paths with curvature regularization
for tracing tubular structures may reduce the risk of the above
problems in some extent. However, modeling a tubular center-
line as a globally optimal curvature-penalized geodesic path
is not always suitable in practical applications. Moreover, the
computation complexity for the curvature-penalized minimal
path models are too high for real-time applications, since
we expect the tracking time to be comparable to the user
interaction time. Examples for illustration of the shortcuts and
short branches combination problems can be seen in Figs. 1
and 2. In Fig. 1, the goal is to extract an artery vessel between

two points from a retinal image patch. The results show that
both the anisotropic tubular model and the FSR model suffer
from the shortcuts and short branches combination problems,
as depicted in Figs. 1b and 1c.

Moreover, we make a test in Fig. 2 with a goal to delineate
a spiral from a synthetic image interrupted by noise. In this
experiment, we evaluate the anisotropic tubular model [3], the
progressive model [26], the FSR model and the proposed one.
The results from the existing models suffer from the shortcuts
problem due to the effects from the noise. In order to overcome
these problems mentioned above, we propose a new minimal
path model for minimally interactive tubular structure tracing
in conjunction with curvature-penalized minimal paths and
trajectories grouping. The resulting path from the proposed
model can avoid these problems as much as possible, as
depicted in Fig. 1d and in column 5 of Fig. 2.

III. TRAJECTORY GROUPING FOR TRACING TUBULAR
STRUCTURES

A. Disjoint Trajectories as Rough Tubularity Descriptor

Basically, tubularity segmentation is regarded as a way of
classifying all points into either tubular structures or back-
ground. The segmentation is usually represented by a binary
mapping, which can be generated by many tubular structure
segmentation approaches as reviewed in literature [1], [2]. In
this paper, we implement a simple method to segment the
tubular structures by directly thresholding a vessel score map
ζ, see Eq. (13). An example for the visualization of the score
map ζ that is derived from a retinal image patch can be seen
in Fig. 3b.

Following that we apply the morphological filters on tubu-
larity segmentation to get the skeleton structure of entire
tubular structure network. In this paper, we suppose that each
trajectory is a connected set involving skeleton points. In order
to obtain disjoint trajectories, we remove all the branch points
from the computed tubular skeleton structures, where a branch
point is a skeleton point connecting at least three trajectories.
We illustrate an example for the disjoint trajectories in Fig. 3c,
where each trajectory is tagged by different colors. Moreover,
in order to reduce the computation complexity, we remove the
trajectories for which the length (in grid points) is lower than
a given thresholding value.
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Fig. 3. The procedure of the proposed tubular structure tracing model. a A retinal image patch with vessels of high tortuosity. The dots represent the
user-provided points. b Visualization for the vessel score map ζ. c A set of trajectories superimposed on the image. d The geodesic path (indicated by red
line) derived from the FSR minimal path model. e Grouped vessel trajectories. f The final path obtained by connecting the gaps between adjacent trajectories
using bridging paths (white lines)
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(c)

Fig. 4. Bridge the gaps between adjacent trajectories involved in an ordered sequence. a A trajectory Tk (indicated by the blue line) adjacent to its neighbours
Tk−1 and Tk+1 indicated by red lines. b Bridging paths indicated by green lines. The black dots lying at the trajectory Tk are the points ak−1 and ak+1,
see text. c The truncated trajectories (red lines) and curvature-penalized bridge paths (black lines).

B. Graph-based Shortest Path

The proposed model for tracing tubular structure centerlines
is established on a graph G = (V,E), where V represents
the set of nodes and E stands for the set of edges between
connected nodes. We denote by eij ∈ E an edge joining
two adjacent nodes ϑi, ϑj ∈ V . Each edge eij is assigned
a weight ωij ∈ R+

0 . For the sake of simplicity, we leverage
the convention that the weight ωij = +∞ implies the node ϑi
is disconnected to ϑj . In tubular structure tracking, one may
expect to get the same tracking result by choosing either of
the two prescribed points as the source point and taking the
remaining one as end point. For this purpose, we focus on the
indirect graph, which means that for each pair of edges eij
and eji, one has ωij = ωji.

As in [30], the graph G is constructed by associating a
node ϑi ∈ V to a trajectory Ti. The edge set E characterizes
the connection between two trajectories Ti and Tj for any
i 6= j. For a fixed trajectory Ti, the joint trajectories Tj can
be detected by a tubular neighbourhood Mi ⊂ Ω surrounding
Ti. A possible way is to perform front propagation associated
to a suitable metric emanating from Ti such that Mi can be
identified by thresholding the propagated geodesic distance.
However, this method may increase the computation com-
plexity of the entire algorithm. Alternatively, we make use of
the method proposed in [30] which uses Euclidean distance.
Specifically, the trajectory Ti is first prolonged from its two

endpoints along the respective tangents, in order to generate
an prolonged trajectory Ti. Then we build a regular tubular
neighbourhood Mi for the extended trajectory by

Mi =

{
x ∈ Ω | min

y∈Ti

‖x− y‖ < τ

}
, (17)

where τ is a given thresholding value. A trajectory Tj is said
to be adjacent to the fixed Ti for any j 6= i, if the prolongated
trajectories Tj satisfies

Mi ∩ Tj 6= ∅. (18)

Given two vertices, optimizing the graph G by Dijkstra’s
algorithm [31] yields a shortest path that consists of a series
of ordered trajectories. Once the sets V and E for the graph G
are built, one can point out that the weight ωij dominates the
tracing results. The weight ωij measures the cost of bridging
the gap between a pair of adjacent trajectories Ti and Tj . In
contrast to [30] which exploits straight segments, we complete
the gap between a pair of adjacent trajectories by curvature-
penalized geodesic paths.

C. Computing the Weights ωij
The generation of a set of orientation-lifted trajectories

constitutes the first step in the proposed model. Basically, a
trajectory Ti ⊂ Ω likely passes through the centerline of a
tubular structure. Thus, a point x ∈ Ti can be assigned to a
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pair of orientations θx ∈ [0, π] and θx + π which characterize
the directions of the centerline at x. Such an orientation θx
can be computed via the orientation scores ψos as follows

θ∗x = arg max
θ∈[0,π]

ψos(x, θ). (19)

Accordingly, a trajectory Ti can be lifted to the space Ω̃,
leading to a new subset T̃i ⊂ Ω̃ as a union of two sets

T̃i = {(x, θ∗x) | ∀x ∈ Ti} ∪ {(x, θ∗x + π) | ∀x ∈ Ti}. (20)

We say that two orientation-lifted trajectories T̃i and T̃j for
any i 6= j are adjacent if their physical projections Ti and Tj
are adjacent.

In the proposed model, we expect to choose a set of
trajectories Ti to constitute a shortest path which delineates the
target tubular structure, providing that two vertices are given.
In principle, the weights ωij should be as low as possible
if two adjacent trajectories Ti and Tj lie at the same tubular
structure. For a fixed trajectory Ti lying in the target structure,
the construction for the weights must allow to differentiate
between a trajectory that belongs to the same structure with
Ti and one belongs to another structure. In many scenarios,
tubular structures appear to be locally smooth. Thus it is
reasonable to estimate the edge weights ωij using curvature-
penalized geodesic distance. The smoothness property of the
curvature-penalized minimal paths agrees with the requirement
for connecting the gaps between two adjacent vessel segments.

For a fixed trajectory T̃i, we consider a geodesic distance
map Ui with respect to T̃i such that

Ui(x̃) = inf
{
Lε(γ̃)|γ̃ ∈ Lip([0, 1], Ω̃),

γ̃(0) ∈ T̃i, γ̃(1) = x̃
}
, (21)

where Lε(γ̃) is the weighted curve length of γ̃ associated to
the metric Fε, see Eq. (7). As discussed in Section II, the
geodesic distance map Ui admits the eikonal PDE (9) with a
boundary condition Ui(x̃) = 0 for any point x̃ ∈ T̃i.

By the definition (21), we can estimate a distance value Di,j
that is the minimal weighted curve length between the fixed
trajectory T̃i and a neighbouring one T̃j

Di,j = min
x̃∈T̃j
Ui(x̃). (22)

Once the distance map Ui is computed, a geodesic path
Ci,j ∈ Lip([0, 1], Ω̃) such that Ci,j(0) ∈ T̃i and Ci,j(1) ∈ T̃j
can be tracked by performing the gradient descent ODE on
the distance map Ui, see Eq. (10).

The minimal length Di,j associated to the metric Fε encodes
the image data-driven function C defined in Eq. (4), due to the
use of the metric Fε. Accordingly, the length Di,j encodes the
tubular appearance features. This may introduce bias to the
cost of connecting the trajectory Ti to any neighbour Tj , espe-
cially when the target structures weaker than its neighbouring
ones. In order to remove the effect from the image data,
we take into account a new weighted length Di,j measured
along the geodesic path Ci,j derived from the distance map
Ui. Let us denote Ci,j := (Ci,j , τi,j) where Ci,j(u) indicates
the spatial positions of the orientation-lifted geodesic path Ci,j ,

and the parametric function τi,j(u) determines the tangent C′i,j ,
see Eq. (2). We expect that the quantity Di,j is explicitly
dependent to the curvature of Ci,j , but independent to the
image data C. Thus the quantity Di,j can be estimated by

Di,j =

∫ 1

0

√
‖C′i,j(u)‖2 + β2τ ′i,j(u)2du

=

∫ 1

0

√
1 + β2κi,j(u)2 ‖C′i,j(u)‖du, (23)

where κi,j denotes the curvature of the physical projection
Ci,j . The parameter β ∈ R+ is a constant controlling the
importance of the curvature. Note that the estimation of Di,j

by Eq. (23) allows to give more importance to the curvature
penalization by setting a larger value to parameter β than
the one used for defining Di,j . Such a quantity Di,j can be
computed directly through the path Ci,j . In this paper, we also
consider an alternative way for estimating the quantity Di,j

relies on a new map Ei : Ω̃ → R+
0 . For each point x̃ ∈ Ω̃,

we can obtain a geodesic path C = (C, τ) such that C(0) ∈ T̃i
and C(1) = x̃. Similar to Eq. (23), we set

Ei(x̃) =

∫ 1

0

√
1 + β2κ(u)2 ‖C′(u)‖du, (24)

where κ represents the curvature of the physical projection C.
We denote by x̃∗i an optimal point such that Di,j = Ui(x̃∗i ),
yielding that Di,j = Ei(x̃∗i ). Note that both of the maps Ui
and Ei can be computed simultaneously, without tracking the
geodesic paths C, as discussed in [23], [34]. In the following
experiments, we apply the map Ei for the estimation of the
value Di,j .

Similar to the computation of the geodesic path Ci,j , we can
generate a different geodesic path Cj,i = (Cj,i, τj,i) traveling
from the trajectory Tj to Ti subject to Cj,i(0) ∈ T̃j and
Cj,i(1) ∈ T̃i. By Eq. (23), we can obtain a weighted curve
length Dj,i associated to Cj,i.

As a consequence, we define the weight ωij for the edge
eij as follows

ωij = min{Dij , Dji}. (25)

The definition in Eq. (25) imposes ωij = ωji, where ωij ,
ωji are the respective weights for the edges of eij and eji.
Following that, the path completing the gap between Ti and
Tj can be chosen as the minimal one between Ci,j and Cj,i in
the sense of the weighted curve length formulated in Eq. (23).
In the following, the geodesic paths for connecting the gaps
are referred to as bridge paths.

D. Implementation Consideration

1) Fast marching Implementation: The numerical compu-
tation for the maps Ui and Ei, indexed by i, can be efficiently
implemented using state-of-the-art Hamiltonian fast marching
algorithm (HFM) [5], as presented in Algorithm 1. The HFM
is performed on a regular grid M = (Ω∩ h1Z2)× (S1 ∩ h2Z)
where h1 and h2 represent the discretization scales. In the
experiments, we set h1 = 1 and h2 = 2π/Nθ, where Nθ is
the number of discretized orientations that is fixed as Nθ = 60.

For each trajectory T̃i and a set of neighbouring trajectories
{T̃j}j , we perform the HFM by taking all the grid points
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Algorithm 1 Numerical Implementation

Input: A pair of orientation-lifted trajectories T̃i, T̃j , and the
neighbourhood system N .

Initialization:
• ∀x̃ ∈ T̃i, set Ui(x̃)← 0, Ei(x̃)← 0, L(x̃)← Trial.
• ∀x̃ ∈ Ω̃\T̃i, set Ui(x̃)←∞, Ei(x̃)←∞, L(x̃)← Far.
1: while L(x̃) 6= Accepted for any point x̃ ∈ T̃j do
2: Find x̃min that is the Trial point minimizing Ui.
3: Set x̃∗ ← x̃min

4: Set L(x̃min)← Accepted.
5: Update the value Ei(x̃min).
6: for all p̃ such that x̃min ∈ N (p̃) do
7: if L(p̃) 6= Accepted then
8: Set L(p̃)← Trial.
9: Update the distance Ui(p̃).

10: end if
11: end for
12: end while
13: Track the geodesic path Ci,j via Eq. (10).
14: Set Di,j = Ei(x̃∗).

involved in the set T̃i ∩M as the source points for initializing
the maps Ui and Ei, and terminate the HFM whenever a grid
point in the set T̃j∩M is reached. The estimation of the map Ei
is carried out in an accumulation manner [23], [34]. During the
distance estimation scheme, the geodesic distance map Di,j is
updated by solving the discretization of the eikonal PDE with
a Hamiltonian form [5], as in Line 9 of Algorithm 1. Such a
scheme can also update the geodesic flows for estimating the
map Ei, see Line 5 of Algorithm 1.

2) Recovering optimal paths: The shortest path T derived
from the Dijkstra’s algorithm [31] consists of a set of K
ordered nodes Tk with 1 ≤ k ≤ K and K ≥ 3, where each
node is a trajectory. In Fig. 3e, we show an example of such
a series of ordered trajectories Tk. In order to build the final
connected path T∗, one has to complete the gaps between
each pair of adjacent trajectories involved in the shortest path
T [30]. In other words, the target path T∗ can be regarded
as a sequence of trajectories and bridge paths. Note that the
first and last nodes in T, i.e. T1 and TK , are the source
and end vertices provided by the user. Among the remaining
trajectories of T , we take a trajectory Tk (k > 1) as example to
show how to bridge the corresponding gaps with its neighbours
Tk+1 and Tk−1. The bridge paths Ck,k+1 and Ck,k−1 between
each neighbouring trajectory and Tk will intersect Tk at two
points ak−1 and ak+1, as depicted in Fig. 4. Only the portion
of Tk between points ak−1 and ak+1 is involved in T∗, which
is referred to as T ∗k . The final path is built as the union of all
the truncated trajectories T ∗k and the bridge paths, as depicted
in Fig. 3f and Fig. 4c.

3) Computation Complexity: The computation cost for the
proposed model can be divided into two parts. The first one
lies at the construction of the graph, which mainly consists of
the computation for the edge weights. This step indeed cost
very long execution time. Fortunately, this process can be done
offline such that the user do not have to wait online in this

stage [30]. Also, the parallel computing scheme can greatly
speed up the computation.

For the Dijkstra’s shortest path algorithm, the computation
complexity is O(N logN) where N is the total number of
trajectories. Since N is much less than the number of grid
points of an image, the proposed tubular structure tracking
method is able to yield shortest paths in a real-time manner,
i.e. comparable to the user interaction.

IV. EXPERIMENTAL RESULTS

A. Configuration

We conduct the numerical experiments with both quali-
tative and quantitative comparison to the progressive mini-
mal path model with bending constraint (Progressive) [26],
the anisotropic tubular minimal path model (Aniso) [3], the
curvature-penalized minimal path model with a FSR met-
ric [4], the grouping method with Euclidean distance and
angles (Group-Angle) [30] on both synthetic and real images.
We refer to the proposed model as Group-FE (resp. Group-
FSR) if the edge weights ωij of the graph G is estimated by
the FE metric (resp. FSR metric).

The Progressive minimal path model invokes a dynamic
isotropic metric by taking into account nonlocal path features,
which introduces the bending constraint into the fast marching
fronts propagation scheme, in order to avoid the shortcuts
and short branches combination problems. The path feature is
computed using a backtracked truncated geodesic path whose
length is fixed as 10 grid points. The thresholding value that
defines the maximally admissible bending degree is set to 0.9,
see [26] for more details. In the following experiments, we use
the same model as [3] to construct the anisotropic Riemannian
metric for the Aniso model. The anisotropic ratio for this
metric is fixed to 10 for all the tests.

The FSR and FE minimal path models descried in Sec-
tion. II are also considered in the experiments. For the FSR
and FE metrics, we fix the parameter ε = 0.1 to achieve good
balance between the accuracy and the computation complexity.
The parameters α and β are weighted parameters which
control the importance of the image data and the curvature
penalization, respectively. We set α = 5 and β = 20 for all
the tests. In addition, both metrics are also used to estimate
the edge weights ωij for the proposed Group-FE and Group-
FSR models. For the Group-Angle model, the same edge set
V as the proposed Group-FE model is adopted to construct
the graph. We exploit the identical method as in [30] for the
estimation of the edge weights ωij .

In the OOF filter, the Gaussian kernel Gσ with the standard
deviation σ is used to slightly smooth of the input image.
The interval [Rmin, Rmax] is the range of the possible radii.
We set σ = 1.5, Rmin = 1, and Rmax = 8. For numerical
consideration, we normalize ψos to the range [0, 1].

Finally, all the experiments are performed on a standard
6-core Intel Core i7 of 3.2GHz architecture with 64Gb RAM.

B. Qualitative Comparison Results

In this work, we compare the proposed model with the state-
of-the-art minimal path-based tracing algorithms.
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Original Images Aniso Progressive FSR Group-Angle Proposed Group-FSR Proposed Group-FE

Fig. 5. Qualitative comparison between different models on synthetic images. The cyan and yellow dots indicate the source and end points, respectively.
Column 1: The original images. Columns 2-7: The red lines represent the obtained paths from each model.

In Fig. 5, we show the tubular centerline tracing results on
our synthetic images. The average size of the four images is
474×321 grid points. The gray levels of these synthetic images
are normalized to the range [0, 1] interrupted by additive
Gaussian noise of normalized standard derivation σn = 0.15.
In each image, there exist two tubular structures of low gray
levels, along which the directions vary smoothly. Our goal is
to extract the one between two given points. In rows 1 and 2,
one can see that the source and end points are close to one
another and the target structure has a long Euclidean length.
In rows 3 and 4, the target structures have strong tortuosity
appearance. In Fig. 5, columns 2 to 5 illustrate the results from
the Aniso, Progressive, FSR and Group-Angle models, where
we have observed the occurrence of the shortcuts and short
branches combination problems. While the paths generated by
the proposed Group-FSR and Group-FE models can correctly
trace the objective vessels, as depicted in columns 6 and
7columns 5 and 6, due to the use of smooth geodesic paths

for the connection of gaps between trajectories.
In Fig. 6, we qualitatively compare the proposed Group-

FSR model1 to the Aniso, Progressive, FSR and Group-Angle
models on from the DRIVE [35] and IOSTAR [36] datasets.
The original retinal images are RGB color images, where
we only use the green channel of each test image [36] for
the computation of the cost function E, see Eq. (16). The
goal is to trace an artery vessel between the given points
indicated by dots. The corresponding ground truth is depicted
in column 1. We note that each model is performed in the
entire retinal image and we only show the image patch in
gray level containing the target vessel for well visualization.
In retinal images, the main challenge is that artery vessels
appear weaker and are often close to or even cross over
veins of strong visibility. In this experiment, some portions

1We observed that tracing results from the proposed Group-FE model are
almost identical to those from Group-FSR model. For better visualization, we
only show the results from the Group-FSR model.
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Ground Truth Aniso Progressive FSR Group-Angle Proposed Group-FSR

Fig. 6. Qualitative comparison between different models on retinal image patches. Column 1: The blue lines indicate the target tubular structure. Columns
2-6: The cyan and yellow dots indicate the source and end points, respectively. The resulting paths (red lines) derived from the Aniso model, the Progressive
model, the FSR model, the Group-Angle model and the proposed Group-FSR model, respectively.

of the target vessels in general appear to be strongly tortuous.
This may introduce difficulties to the Progressive and FSR
models. Moreover, the strong neighbours of the target vessels
will highly affect the results of the Aniso model. Finally,
using straight segments to link adjacent trajectories for vessels
of high length may accumulate the approximation errors. In
columns 2 to 5 of Fig. 6, we can see that the artery vessel
tracing results from the existing models again suffer from
the shortcuts and short branches combination problems. In
contrast, the proposed Group-FSR model passed by the correct
way, see column 6.

In Figs. 7 and 8, we present the tubular structure centerline
tracing results from the Aniso, Progressive, FSR, Group-Angle
and the proposed Group-FSR models on road and river images.
In these experiments, the color images are first converted
into gray levels in a preprocessing step, such that the cost
function E is extracted from these gray images. However, we
still draw the tubular structure tracking results on the original
color images for better visualization. In Fig. 7, we show the
qualitative results on aerial images of road networks [20]. The
main difficulty usually lies at the complicated background such
as buildings which may also produce strong tubular appearance
features. From columns 2 to 5 of Fig. 7, one can observe
the shortcuts occur when implementing the existing models.
While for the results from the proposed model, the objective
structures can be correctly traced thanks to the proposed
edge weights construction way. In Fig. 8, we demonstrate the

extracted paths indicated by red lines on road and river patches
from satellite images. The target tubular structures surrounded
by complicated background also appear very long and have
strong tortuosity. The tracing results derived from the existing
results are shown in columns 2 to 5, from which we observe
paths with shortcuts. In contrast, the proposed Group-FSR
model can follow the road and river structures successfully.

C. Quantitative Evaluation Results

The qualitative comparisons on synthetic images, retinal
vessel images and natural images presented in Section IV-B
prove that the proposed Group-FSR and Group-FE models
indeed obtain promising results. In order to evaluate the
proposed models in a rigorous and convincing manner, here
we run the quantitative comparisons on the synthetic images
and retinal images, respectively. The accuracy that measures
the performance of the tested models is carried out by a score
J defined as follows:

J =
#|S ∩GT |

#|S| , (26)

where S is the set of grid points passed through by the
evaluated paths, GT denotes the region of the ground truth,
and #|S| stands for the elements involved in the set S.
The accuracy score J is ranged within the interval [0,1],
where higher values of J means better performance on tracing
tubular structures.
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Original Images Aniso Progressive FSR Group-Angle Proposed Group-FSR

Fig. 7. Qualitative comparison between different models on road image patches. The dots indicate the user-provided points and the red lines represent the
obtained paths. Column 1: The original images. Columns 2-6: Results from the Aniso, Progressive, FSR, Group-Angle and the proposed Group-FSR models,
respectively.

TABLE I
THE VALUES OF J FOR EVALUATING THE PERFORMANCE OF THE CONSIDERED MODELS ON SYNTHETIC IMAGES SHOWN IN FIG. 5

Images Aniso Progressive FSR Group-Angle Proposed Group-FSR Proposed Group-FE

Column 1 40.64% 41.41% 45.67% 42.64% 100.00% 100.00%

Column 2 74.86% 66.86% 57.14% 75.10% 100.00% 100.00%

Column 3 36.30% 16.53% 65.30% 68.09% 100.00% 100.00%

Column 4 52.71% 40.09% 52.82% 53.03% 100.00% 100.00%

We first present the performance of the compared models
on the synthetic images shown in Fig. 5. The ground truth GT
is set as a binary segmentation of all pixels corresponding to
the target structures. The accuracy scores J computed from
the evaluated paths are shown in Table I. One can point out
that proposed Group-FSR and Group-FE models achieve the
best performance among all the considered models.

In Table II, we show the quantitative evaluation results
on the retinal images from the datasets of DRIVE [35] and
IOSTAR [36]. Tracing artery vessels from retinal images
providing that only few user-provided points are given is a
challenging task, thus can well measure the performance of the
considered models. For a quantitative evaluation, we compare
our proposed Group-FSR and Group-FE models to the Aniso,

Progressive, FSR and Group-Angle models, in the sense of
the accuracy score J defined in Eq. (26). We have extracted
the ground truth regions for each tested artery vessel from
the artery-vein ground truth images. Note that each artery-
vein ground truth image classifies each grid point belonging
to either artery, vein or background. We made use of 394 artery
vessels sampled from two datasets, where most of the major
artery vessels in each retinal image are taken into account for
evaluation. Among all the tests, we provide only 2 points for
321 vessels and the remaining cases require 3 points. Again,
we note that each individual artery vessel is tracked using the
entire image. In each test, all the evaluated models are under
the same user-supplied points. In Table. II, we illustrate the
average accuracy scores for different models. In this table, we
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Original Images Aniso Progressive FSR Group-Angle Proposed Group-FSR

Fig. 8. Qualitative comparison between different models on road and river image patches. The dots indicate the user-provided points and the red lines
represent the obtained paths. Column 1: The original images. Columns 2-6: Results from the Aniso, Progressive, FSR, Group-Angle and Group-FSR models,
respectively.

observe that the proposed Group-FSR and Group-FE models
demonstrate large gaps to the other tested models, proving
the advantages of the proposed models. In addition, we can
see that in each dataset the average values of J for the
proposed Group-FSR and Group-FE models are similar to
each other and achieve around 12% higher than the Group-
Angle model. Note that we utilized the same node and edge
sets to construct the graphs for the Group-Angle model and
the proposed models, except for the computation of the edge
weights.

Finally, we show more statistical results on the accuracy
scores J for all the tested models through the tool of box
plots, as depicted in Fig. 9. The left and right columns in Fig. 9
correspond to the results on the DRIVE and IOSTAR datasets,
respectively. The results shown in this figure again prove that
the proposed models outperform the compared state-of-the-art
models in both robustness and accuracy.

V. CONCLUSIONS

In this paper, we propose a new minimal paths-based
approach for the delineation of tubular structure centerlines by
grouping a set of prescribed trajectories based on the Dijkstra’s
shortest path method. A crucial point for the proposed method
concentrates on the use of data-driven curvature-penalized
geodesic paths used to fit the lost vessel segments between pre-
scribed trajectories. Accordingly, the proposed model is able to
blend the benefits from the prescribed tubular trajectories, the
curvature-penalized geodesic paths and the global optimality
of Dijkstra’s algorithm. The experimental results prove that the
proposed models (involving both the Group-FSR or Group-
FE models) indeed outperform state-of-the-art minimal path-
based tubular structure tracking models such as the anisotropic
tubular geodesic model [3], the progressive minimal path
model [26], the FSR model with curvature regularization [4].
The future work can be devoted to developing algorithms for
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TABLE II
AVERAGE VALUES OF J FOR EVALUATING THE PERFORMANCE OF THE CONSIDERED MODELS IN ARTERY VESSELS TRACING ON RETINAL IMAGES FROM

THE DRIVE AND IOSTAR DATASETS

Datasets Aniso Progressive FSR Group-Angle Proposed Group-FSR Proposed Group-FE

DRIVE 52.26% 54.92% 48.01% 84.01% 98.50% 97.22%

IOSTAR 67.09% 74.54% 78.71% 85.62% 98.43% 96.79%

Fig. 9. Box plots of J for different methods on retinal images, where the left and right figures are the evaluation results corresponding to the DRIVE and
IOSTAR datasets, respectively

automatic extraction of tubular tree structures based on the
proposed Group-FSR or Group-FE models.
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